

Stawell Underground Physics Laboratory (SUPL)

Design, Specifications and Excavation

- The University of Melbourne is leading the planning and construction of SUPL in a partnership with the members that make up the newly formed company SUPL Ltd who will control and run the laboratory.
- SUPL Ltd members are: UoA, Swinburne, UoM, ANU and ANSTO.
- The ARC Centre of Excellence for Dark Matter Particle Physics will build and operate the first experiment (SABRE South) in the laboratory once completed in 2022.
- SUPL was proposed in 2014, commenced in 2016 but put on hold due to a temporary phase of mine care and maintenance. Construction commenced in 2019 with State and Federal funding committed.

SUPL Design

- Wood (formerly Amec Foster Wheeler) was appointed to design SUPL in 2016.
- An extensive consultation process was held to make the design work for the multiple stakeholders.
- Other deep underground low radiation laboratories served as design examples of what others have achieved – Gran Sasso (within the Traforo del Gran Sasso freeway tunnel), SNOLAB (within Creighton Mine).
- SUPL design is bespoke and considers experiment requirements, radiation, lab space, personnel facilities, delivery management etc.

- Input data was sourced from existing excavation conditions, SGM databases, and two dedicated investigation drill holes.
- Entirely located within basalt. Three joint sets, structures lacking persistence, stress issues were not noted in the existing development.
- Kinematics, numerical models and empirical methods were used in combination to confirm the ground support requirements.
- Empirical assessment heavily influenced by the assigned SRF and ESR.

Main Chamber

- 150mm fibrecrete floor to floor.
- 3m long fully resin encapsulated 25mm rock bolts, 1.5m x 1.3m spacing on all walls and backs.
- 6m long single strand cablebolts installed on 3m x 2.6m spacing, all walls and backs.

- 120mm fibrecrete floor to floor.
- 2.7m long fully resin encapsulated 25mm rock bolts, 1.4m spacing on all walls and backs.

Existing Development Upgrade

- Existing ground support consisting of friction bolts and mesh.
- 120mm thick fibrecrete to walls and backs.
- 2.4m long fully resin encapsulated 25mm rock bolts, 1.5m spacing on all walls and backs.
- Cablebolts at all intersections.
- Floors graded to design levels.

Quality of Installation

- Detailed records of ground support specification compliance were maintained and reported.
- Extensive testing of fibrecrete and rockbolts.

Fibrecrete

- A difficult specification of 40MPa and 400J.
- The Stawell Gold Mines mix was taken as the base case, and then altered:
 - Increased the amount of sand,
 - Increased the amount of fibre.
- More attention was given to sample preparation and early stage curing.

- Standard jumbo installation.
- Overdesign of resin volume. 35mm bit, 30mm diam resin, full hole length.
- Time spent with the operators to help them take ownership of the encapsulation specification.
- Simple steps followed, like mark up of the bolting steel.
- Result speak for themselves.

Radiation Considerations

- Radiation from radioactive isotopes, and also radon gas occurs naturally, but SUPL needed to be as "quiet" as possible.
- Ground support products were selected to reduce radiation from introduced ground support and building material.
- Inspections/audits were conducted at suppliers facilities/quarries, to ensure compliance with material source and tracking requirements.
- Radiation testing facilities set up at the SGM 729 workshop.

Concrete Slab and Internal Build

- Lack of floor position control meant compacted crushed rock was needed to re-establish level.
- Compaction testing conducted.
- Further radiation testing during the concrete pour.
- Radiation testing of samples from build materials of interest.

Build Progress

• Nearing completion, in early 2022.

