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ABSTRACT: Long term integrity of cables installed around tunnels for ground reinforcement can be 

influenced by ground movement. This paper reports on the laboratory study of the influence of 

shearing on damaging the encapsulated plastic sleeves leading to exposure of the cable surface to a 

hostile environment. Two experimental studies were carried out to assess the extent of shearing 

displacement and damage to the sleeves. Various shear displacement tests were carried out. In the 

first test a sleeved cable was encapsulated in a plastic tube and single sheared up to 43 mm vertical 

displacement and the same procedure was repeated with the second sleeved cable being subjected 

to double shearing using a double shear testing Machine MKII. In both tests it was found that the 

corrugated plastic sleeves started to be sheared at a maximum displacement of greater than 20 mm, 

without damage, it was inferred that the corrugated sleeve can withstand shearing displacement 

without tearing up to maximum of 33 mm. The experimental procedure and the variation in the testing 

method are described.  

 

INTRODUCTION 

 

Increasingly tunnels are being introduced into metropolitan transport systems to provide links in urban 

areas where surface routes become congested and are preferred to conserve surface facilities of 

particular merit. Tunnels provide safe, environmentally sound, very fast and unobtrusive transport for 

all walks of life. In urban areas they are also built or constructed at shallow depth and pass through 

different rock structures of varying competence. Construction of tunnels in urban areas requires 

effective reinforcement and regular monitoring. Failure to address reinforcement integrity may have 

severe consequences including; 

 Damage to the tunnel structure caused by excessive tendon corrosion, 

 Interruption to traffic flow, 

 Excessive tunnel maintenance cost, 

 Damage to surface facilities, and  

 Costly litigations  

 

The most widely used reinforcement system now-a-days is by tendons (both rock bolts and cables) 

and their effectiveness and long term performance is dependent on the nature of ground formation 

that the tunnel is driven through. Long term stability of the tunnel requires long term integrity of the 

reinforcement elements anchored into the surrounding rock formation. Steel corrosion represents the 

most important factor that undermines the long term integrity and stability of the constructed tunnels. 

The incorporation of plastic sleeves to tendons provides this element of protection as long as cables 

are encapsulated in the plastic sleeve and that the used sleeves have long term durability. Ground 

movement and deformation surrounding the tunnel may cause the sleeves to crack and exposure of 

the tendons to groundwater. The extent of the ground movement and tendon shearing may be 
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evaluated by regular monitoring for ground movement from the surface. Better understanding of the 

extent of ground deformation that may contribute to the demise in the integrity of the installed sleeves 

represents a challenge that is being addressed and is the subject of study in this paper. 

  

A challenge associated with incorporating a protective plastic sleeve over the reinforcing tendon is 

ensuring effective load transference between the tendon, the grout annuli and the ground. A smooth 

plastic sleeve relies heavily on the skin friction between the sleeve and the grout annuli to transfer 

load from ground movement to the tendon and ultimately reduces the load transference capacity of 

the system. To overcome this, many ground support standards and guidelines specify that the 

geometric profile of the sleeve should be corrugated and sinusoidal in shape. For instance, the British 

standard code of practice for ground anchorages, BS 8081: 1989, as well as the Roads and Maritime 

Services (RMS) quality assurance specification for soil nailing (R64) both specify sinusoidal 

corrugations with a pitch between six and twelve times the sleeve wall thickness and amplitude not 

less than three times the wall thickness as shown in Figure 1. The idea is to create a mechanical 

interlock between the inner and outer grout annuli through the geometric interference introduced by 

the corrugations in the plastic sleeve. This relies on the shear strength of the cement grout as 

opposed to the mechanical properties of the plastic sleeve. Figure 2 shows a typical flexible corrosion 

protected ground anchor which incorporates the protective plastic sleeve. 

 
Figure1: Cross-section of corrugated plastic sleeve 

Figure 2: Typical flexible corrosion protected ground anchor 

THE PROCEDURE 

For evaluating the integrity of encapsulating sleeves on cable bolts, two methods of testing the 

sleeved cable sections were undertaken. The aim was to determine the maximum shear displacement 

of the cable that would cause the plastic sleeve to crack during shearing. Initially sleeved cable 

sections were subjected to a single shear test method and this was followed by the standard large 

scale double shear test methods. 21.7 mm diameter 19 wire (9x9x1) construction designation 

Superstrand cable was used in the study. BluGeo HS400 grout was used to encapsulate the steel 
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cable with corrugated plastic sheathing. The corrugated plastic sheath is manufactured from High 

Density Polyethylene (HDPE) with a wall thickness of 2.0 mm, pitch of 22 mm and amplitude of 6 mm 

(refer to Figure 1). A close up view of the cable and corrugated plastic sleeve is shown in Figure 3. 

 

  

Figure 3: A close up view of the 21.7 mm diameter steel cable and corrugated plastic sleeve 

 

Single shear test 

 

A guillotine type single shear apparatus as shown in Figure 4a was used to carry out the preliminary 

shear tests. The encapsulated cable was grouted in a 5 mm thick smooth wall plastic tube using a 

cementitious grout to act as the outside protection layer. A 12 mm ring strip of the plastic cover was 

removed from mid-section of the encapsulated cable section to expose the corrugated tube, shown in 

Figure 4b, to allow the bare corrugated plastic sleeve to be visually inspected when sheared. 

Shearing of the cable was carried out in four displacement steps, until cracks appear in the 

corrugated sleeve.  

 

 

 

 

 

 

Figure 5 shows the shear load and shear displacement of four tests. The final test was terminated at 

shear displacement of 43 mm. The test was stopped at the end of each predetermined displacement 

step shown in the graph and the cable sleeve was physically examined for any damage. Four shear 

displacement step ranges were made. They were 6, 12, 24, and 40 mm ranges. As seen in Figure 5 

the displacements range step of 24 mm represented, the critical shear travel for plastic sleeve failure. 

The shear displacement of the cable after 6 and 12 mm was recovered once the sheared load was 

taken off the cable. Figure 6 shows the ultimate cable shear travel and the condition of the damaged 

sleeve respectively. The final view of the damaged sleeve may have occurred, when the shear 

displacement was beyond 24 mm. An audible cracking sound was heard at the vertical displacement 

of around 33 mm. Therefore it is reasonable to suggest that cracking of the corrugated sleeve 

occurred at the vertical shearing movement of 33 mm.   

      Figure 4a: Single shear apparatus:                                               

 

Figure 4b: Cable section with corrugated sleeve  

installed in 45 mm plastic tube 

 

Wall Thickness, w 
Corrugated plastic sleeve 21.8 mm, 19 wire (9x9x1)cable  
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Figure 5: Shear load and displacement graphs 

 

Figure 6: Damaged corrugated sleeve at the end of the shearing test 

Double shearing method 

The aim of this investigation was to determine the possible damage on the sheath of the corrosion 

protected cable bolt upon subject to 15 and 20 mm shear displacements. Testing was carried out in 

accordance with the double shearing methodology reported by Aziz et al., (2015 a and b). In this 

study the contact between concrete medium joint surfaces were allowed, by using MKII double shear 

apparatus.  The double shear testing process requires three concrete blocks with two outer 300 mm 

side cubes and a central rectangular block 450 mm long. The strength of the concrete used was 

relatively weak at around 20 MPa as specified for the investigation. The casting of the concrete blocks 

was carried out directly in the confining steel frame of the double shear apparatus. A plastic conduit 
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wrapped with 8 mm PVC tube and set through the centre of the mould lengthways, creating a 

centralised hole for cable installation in the concrete blocks. The plastic conduit was gently pushed 

out once the concrete block was set. The concrete blocks were left immersed in a water tank to cure 

for a minimum period of 28 days. The Uniaxial Compressive Strength of concrete was determined as 

21 MPa, after the period of curing, by testing three cylindrical samples. 

The cured blocks were then mounted in the double shear confining steel frames and the sleeved 

cable bolt specimen was inserted into the borehole. The annulus section between the sheath and 

cable was grouted and left for setting prior to cable bolt installation. Two 100 t load cells were inserted 

onto each end of the cable followed by the typical cable bolt end fitting. The load cells were connected 

to the data logger during tensioning. Once the cable was pretensioned for 5 t of axial load as 

specified, the grout was injected into the annulus between the cable and borehole through the 

intersecting small holes on top of the block. The whole assembly was then left undisturbed for the 

duration of seven days for the grout to cure. 50 mm cube samples were cast from the same grout as 

used for encapsulation and then tested for strength, yielding 45 MPa of UCS after seven  days of 

curing. The top of the concrete blocks were covered by the bolted steel plates and the whole 

assembly was then mounted on the carried base platform. The whole double shear assembly and the 

base frame was then positioned on to the 500 t compression testing machine for shearing process at 

the rate of 1 mm/min as shown in Figure 7. 

RESULTS AND ANALYSIS 

Figure 8 shows the shear load and axial load profiles against shear displacement for two tests 

conducted in this study. The maximum values of shear load attained during double shearing, were 20 

t and 24.3 t for 15 mm and 20 mm of shear displacement respectively. These correspond to maximum 

axial load of 7.3 t and 8.9 t. At the end of the test, the double shear assembly was dismantled and the 

tested cable was extracted and examined for the extent of damage to the protective sheath. Figure 8 

shows pictures that were captured once the concrete blocks were gently dismantled. 

 

 

Figure 7: Double shear testing apparatus in 500 t compression testing machine 
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Figure 8: Shear and axial load profiles against shear displacement, left at 15 mm of shear 

displacement and right at 20 mm of shear displacement 

For 15 mm of shear displacement; 

 No damage was observed cable bolt sheath , 

 Deformation shear displacement of the cable bolt was recovered once the sample was 

dismantled, 

 Cracks were observed on top of the concrete blocks once the steel cap was opened. 

 

Figure 9 shows post-test picture of the second test where the maximum shear displacement set to 20 

mm. The following main conclusions were obtained: 

 No damage on sheath of cable bolt was observed, 

 Permanent deformation of the sheathed cable  was noted once the sample was dismantled, 

 Cracks were observed on the top and side of the concrete blocks once the steel box was 

opened. 

 

Clearly the vertical shear displacement of 20 mm appeared not to have caused any detrimental 

damage to the sheath, which entails that the enclosed cable inside the plastic sheath would not be 

exposed to an adverse environment. Triggering of the plastic deformation and cracking would be 

likely to occur at shear displacement beyond 25 mm as indicated from the initial single shear testing.  

 

Figure 9: Post-test pictures of double shearing for 20 mm of shear displacement 
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CONCLUSION 

No damage was noted on the protective sheath of the cable bolt when the double shearing assembly 

was subjected to 15 and 20 mm of shear displacement at the rate of 1 mm/min. Permanent 

deformation was observed on the protective sheath after 20 mm of shear displacement. The position 

of permanent deformation corresponds with the location of the concrete blocks joint. Triggering of the 

plastic deformation and cracking would likely to occur at shear displacement beyond 25 mm as 

indicated from the initial single shear testing. 
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